Bases: Optimizer
PyTorch implementation of the Lion optimizer from https://github.com/google/automl/blob/master/lion/lion_pytorch.py
Methods:
-
__init__
–
Initialize the hyperparameters.
-
step
–
Performs a single optimization step.
Source code in tapeagents/finetune/optim.py
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112 | class Lion(Optimizer):
r"""PyTorch implementation of the Lion optimizer from https://github.com/google/automl/blob/master/lion/lion_pytorch.py"""
def __init__(self, params, lr=1e-4, betas=(0.9, 0.99), weight_decay=0.0):
"""Initialize the hyperparameters.
Args:
params (iterable): iterable of parameters to optimize or dicts defining
parameter groups
lr (float, optional): learning rate (default: 1e-4)
betas (Tuple[float, float], optional): coefficients used for computing
running averages of gradient and its square (default: (0.9, 0.99))
weight_decay (float, optional): weight decay coefficient (default: 0)
"""
if not 0.0 <= lr:
raise ValueError("Invalid learning rate: {}".format(lr))
if not 0.0 <= betas[0] < 1.0:
raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0]))
if not 0.0 <= betas[1] < 1.0:
raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1]))
defaults = dict(lr=lr, betas=betas, weight_decay=weight_decay)
super().__init__(params, defaults)
@torch.no_grad()
def step(self, closure=None):
"""Performs a single optimization step.
Args:
closure (callable, optional): A closure that reevaluates the model
and returns the loss.
Returns:
(tensor): the loss.
"""
loss = None
if closure is not None:
with torch.enable_grad():
loss = closure()
for group in self.param_groups:
for p in group["params"]:
if p.grad is None:
continue
# Perform stepweight decay
p.data.mul_(1 - group["lr"] * group["weight_decay"])
grad = p.grad
state = self.state[p]
# State initialization
if len(state) == 0:
# Exponential moving average of gradient values
state["exp_avg"] = torch.zeros_like(p)
exp_avg = state["exp_avg"]
beta1, beta2 = group["betas"]
# Weight update
update = exp_avg * beta1 + grad * (1 - beta1)
p.add_(torch.sign(update), alpha=-group["lr"])
# Decay the momentum running average coefficient
exp_avg.mul_(beta2).add_(grad, alpha=1 - beta2)
return loss
|
__init__(params, lr=0.0001, betas=(0.9, 0.99), weight_decay=0.0)
Initialize the hyperparameters.
Parameters:
-
params
(iterable
)
–
iterable of parameters to optimize or dicts defining
parameter groups
-
lr
(float
, default:
0.0001
)
–
learning rate (default: 1e-4)
-
betas
(Tuple[float, float]
, default:
(0.9, 0.99)
)
–
coefficients used for computing
running averages of gradient and its square (default: (0.9, 0.99))
-
weight_decay
(float
, default:
0.0
)
–
weight decay coefficient (default: 0)
Source code in tapeagents/finetune/optim.py
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70 | def __init__(self, params, lr=1e-4, betas=(0.9, 0.99), weight_decay=0.0):
"""Initialize the hyperparameters.
Args:
params (iterable): iterable of parameters to optimize or dicts defining
parameter groups
lr (float, optional): learning rate (default: 1e-4)
betas (Tuple[float, float], optional): coefficients used for computing
running averages of gradient and its square (default: (0.9, 0.99))
weight_decay (float, optional): weight decay coefficient (default: 0)
"""
if not 0.0 <= lr:
raise ValueError("Invalid learning rate: {}".format(lr))
if not 0.0 <= betas[0] < 1.0:
raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0]))
if not 0.0 <= betas[1] < 1.0:
raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1]))
defaults = dict(lr=lr, betas=betas, weight_decay=weight_decay)
super().__init__(params, defaults)
|
step(closure=None)
Performs a single optimization step.
Parameters:
-
closure
(callable
, default:
None
)
–
A closure that reevaluates the model
and returns the loss.
Returns:
Source code in tapeagents/finetune/optim.py
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112 | @torch.no_grad()
def step(self, closure=None):
"""Performs a single optimization step.
Args:
closure (callable, optional): A closure that reevaluates the model
and returns the loss.
Returns:
(tensor): the loss.
"""
loss = None
if closure is not None:
with torch.enable_grad():
loss = closure()
for group in self.param_groups:
for p in group["params"]:
if p.grad is None:
continue
# Perform stepweight decay
p.data.mul_(1 - group["lr"] * group["weight_decay"])
grad = p.grad
state = self.state[p]
# State initialization
if len(state) == 0:
# Exponential moving average of gradient values
state["exp_avg"] = torch.zeros_like(p)
exp_avg = state["exp_avg"]
beta1, beta2 = group["betas"]
# Weight update
update = exp_avg * beta1 + grad * (1 - beta1)
p.add_(torch.sign(update), alpha=-group["lr"])
# Decay the momentum running average coefficient
exp_avg.mul_(beta2).add_(grad, alpha=1 - beta2)
return loss
|